Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biochim Biophys Acta Biomembr ; 1864(10): 183996, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-35753394

RESUMEN

The treatment of invasive drug-resistant and potentially life-threatening fungal infections is limited to few therapeutic options that are usually associated with severe side effects. The development of new effective antimycotics with a more tolerable side effect profile is therefore of utmost clinical importance. Here, we used a combination of complementary in vitro assays and structural analytical methods to analyze the interaction of the de novo antimicrobial peptide VG16KRKP with the sterol moieties of biological cell membranes. We demonstrate that VG16KRKP disturbs the structural integrity of fungal membranes both invitro and in model membrane system containing ergosterol along with phosphatidylethanolamine lipid and exhibits broad-spectrum antifungal activity. As revealed by systematic structure-function analysis of mutated VG16KRKP analogs, a specific pattern of basic and hydrophobic amino acid side chains in the primary peptide sequence determines the selectivity of VG16KRKP for fungal specific membranes.


Asunto(s)
Antifúngicos , Ergosterol , Antifúngicos/química , Antifúngicos/farmacología , Membrana Celular/metabolismo , Ergosterol/química , Péptidos/química , Péptidos/farmacología , Esteroles/metabolismo
2.
J Ethnopharmacol ; 283: 114666, 2022 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-34592338

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Ervatamia coronaria, a popular garden plant in India and some other parts of the world is known traditionally for its anti-inflammatory and anti-cancer properties. The molecular bases of these functions remain poorly understood. AIM OF THE STUDY: Efficacies of the existing therapies for colorectal cancer (CRC) are limited by their life-threatening side effects and unaffordability. Therefore, identifying a safer, efficient, and affordable therapeutic is urgent. We studied the anti-CRC activity of an alkaloid-rich fraction of E. coronaria leaf extracts (AFE) and associated underlying mechanism. MATERIALS AND METHODS: Activity guided solvant fractionation was adopted to identify the activity in AFE. Different cell lines, and tumor grown in syngeneic mice were used to understand the anti-CRC effect. Methodologies such as LCMS, MTT, RT-qPCR, immunoblot, immunohistochemistry were employed to understand the molecular basis of its activity. RESULTS: We showed that AFE, which carries about six major compounds, is highly toxic to colorectal cancer (CRC) cells. AFE induced cell cycle arrest at G1 phase and p21 and p27 genes, while those of CDK2, CDK-4, cyclin-D, and cyclin-E genes were downregulated in HCT116 cells. It predominantly induced apoptosis in HCT116p53+/+ cells while the HCT116p53-/- cells under the same treatment condition died by autophagy. Notably, AFE induced upregulation of AMPK phosphorylation, and inhibition of both of the mTOR complexes as indicated by inhibition of phosphorylation of S6K1, 4EBP1, and AKT. Furthermore, AFE inhibited mTOR-driven conversion of cells from reversible cell cycle arrest to senescence (geroconversion) as well as ERK activity. AFE activity was independent of ROS produced, and did not primarily target the cellular DNA or cytoskeleton. AFE also efficiently regressed CT26-derived solid tumor in Balb/c mice acting alone or in synergy with 5FU through inducing autophagy as a major mechanism of action as indicated by upregulation of Beclin 1 and phospho-AMPK, and inhibition of phospho-S6K1 levels in the tumor tissue lysates. CONCLUSION: AFE induced CRC death through activation of both apoptotic and autophagy pathways without affecting the normal cells. This study provided a logical basis for consideration of AFE in future therapy regimen to overcome the limitations associated with existing anti-CRC chemotherapy.


Asunto(s)
Alcaloides/farmacología , Antineoplásicos Fitogénicos/farmacología , Neoplasias Colorrectales/tratamiento farmacológico , Tabernaemontana/química , Proteínas Quinasas Activadas por AMP/metabolismo , Alcaloides/aislamiento & purificación , Animales , Antineoplásicos Fitogénicos/aislamiento & purificación , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Puntos de Control del Ciclo Celular/efectos de los fármacos , Células HCT116 , Células HT29 , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
3.
Oncotarget ; 7(48): 78281-78296, 2016 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-27835876

RESUMEN

Aggregation of proteins with the expansion of polyglutamine tracts in the brain underlies progressive genetic neurodegenerative diseases (NDs) like Huntington's disease and spinocerebellar ataxias (SCA). An insensitive cellular proteotoxic stress response to non-native protein oligomers is common in such conditions. Indeed, upregulation of heat shock factor 1 (HSF1) function and its target protein chaperone expression has shown promising results in animal models of NDs. Using an HSF1 sensitive cell based reporter screening, we have isolated azadiradione (AZD) from the methanolic extract of seeds of Azadirachta indica, a plant known for its multifarious medicinal properties. We show that AZD ameliorates toxicity due to protein aggregation in cell and fly models of polyglutamine expansion diseases to a great extent. All these effects are correlated with activation of HSF1 function and expression of its target protein chaperone genes. Notably, HSF1 activation by AZD is independent of cellular HSP90 or proteasome function. Furthermore, we show that AZD directly interacts with purified human HSF1 with high specificity, and facilitates binding of HSF1 to its recognition sequence with higher affinity. These unique findings qualify AZD as an ideal lead molecule for consideration for drug development against NDs that affect millions worldwide.


Asunto(s)
ADN/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Factores de Transcripción del Choque Térmico/metabolismo , Limoninas/farmacología , Enfermedades Neurodegenerativas/prevención & control , Fármacos Neuroprotectores/farmacología , Péptidos/metabolismo , Extractos Vegetales/farmacología , Agregación Patológica de Proteínas , Animales , Azadirachta/química , ADN/genética , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Células HCT116 , Células HEK293 , Factores de Transcripción del Choque Térmico/genética , Humanos , Limoninas/aislamiento & purificación , Limoninas/metabolismo , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Fármacos Neuroprotectores/aislamiento & purificación , Fármacos Neuroprotectores/metabolismo , Extractos Vegetales/aislamiento & purificación , Extractos Vegetales/metabolismo , Unión Proteica , Semillas , Factores de Tiempo , Transfección
4.
Apoptosis ; 21(10): 1106-24, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27392939

RESUMEN

The efficacy of cancer chemotherapeutics is limited by side effects resulting from narrow therapeutic windows between the anticancer activity of a drug and its cytotoxicity. Thus identification of small molecules that can selectively target cancer cells has gained major interest. Cancer cells under stress utilize the Unfolded protein response (UPR) as an effective cell adaptation mechanism. The purpose of the UPR is to balance the ER folding environment and calcium homeostasis under stress. If ER stress is prolonged, tumor cells undergo apoptosis. In the present study we demonstrated an 3,3'-(Arylmethylene)-bis-1H-indole (AMBI) derivative 3,3'-[(4-Methoxyphenyl) methylene]-bis-(5-bromo-1H-indole), named as Mephebrindole (MPB) as an effective anti-cancer agent in breast cancer cells. MPB disrupted calcium homeostasis in MCF7 cells which triggered ER stress development. Detailed evaluations revealed that mephebrindole by activating p38MAPK also regulated GRP78 and eIF2α/ATF4 downstream to promote apoptosis. Studies extended to in vivo allograft mice models revalidated its anti-carcinogenic property thus highlighting the role of MPB as an improved chemotherapeutic option.


Asunto(s)
Factor de Transcripción Activador 4/metabolismo , Apoptosis/efectos de los fármacos , Neoplasias de la Mama/tratamiento farmacológico , Carcinoma/tratamiento farmacológico , Factor 2 Eucariótico de Iniciación/metabolismo , Indoles/administración & dosificación , Factor de Transcripción CHOP/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Factor de Transcripción Activador 4/genética , Animales , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/fisiopatología , Carcinoma/genética , Carcinoma/metabolismo , Carcinoma/fisiopatología , Línea Celular Tumoral , Chaperón BiP del Retículo Endoplásmico , Factor 2 Eucariótico de Iniciación/genética , Femenino , Humanos , Indoles/síntesis química , Indoles/química , Ratones , Receptor Cross-Talk/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Factor de Transcripción CHOP/genética , Proteínas Quinasas p38 Activadas por Mitógenos/genética
5.
Front Pharmacol ; 7: 114, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27199756

RESUMEN

Triple-negative breast cancer (TNBC), is a specific subtype of epithelial breast tumors that are immuno-histochemically negative for the protein expression of the estrogen receptor (ER), the progesterone receptor (PR) and lack over expression/gene amplification of HER2. This subtype of breast cancers is highly metastatic, shows poor prognosis and hence represents an important clinical challenge to researchers worldwide. Thus alternative approaches of drug development for TNBC have gained utmost importance in the present times. Dietary indole and its derivatives have gained prominence as anti-cancer agents and new therapeutic approaches are being developed to target them against TNBC. But a major drawback with 3, 3'di Indolyl methane (DIM) is their poor bioavailability and high effective concentration against TNBC. However, the Aryl methyl ring substituted analogs of DIM display interesting anti-cancer activity in breast cancer cells. In the current study we report the synthesis of a novel synthetic aryl methyl ring substituted analog of DIM, named as Phemindole as an effective anti-tumor agent against TNBC cells. Furthermore, we enumerated that Phemindole caused reactive oxygen species mediated mitochondrial-dependent apoptosis in MDAMB-231 cells. Furthermore, Phemindole mediated Store Operated Calcium Entry (SOCE) retardation favored inactivation of STIM1 and henceforth activated ER stress to induce apoptosis in TNBC cells. Simultaneously, Phemindole was also found to restrict the in vitro cell migration through its anti mitotic property and pFAK regulation. Studies extended to ex ovo and in vivo mice models further validated the efficacy of Phemindole. Thus our results cumulatively propose Phemindole as a new chemotherapeutic regime which might be effective to target the deadly aspects of the TNBC.

6.
Front Microbiol ; 7: 412, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27065976

RESUMEN

Exploration of the aquatic microbiota of several circum-neutral (6.0-8.5 pH) mid-temperature (55-85°C) springs revealed rich diversities of phylogenetic relatives of mesophilic bacteria, which surpassed the diversity of the truly-thermophilic taxa. To gain insight into the potentially-thermophilic adaptations of the phylogenetic relatives of Gram-negative mesophilic bacteria detected in culture-independent investigations we attempted pure-culture isolation by supplementing the enrichment media with 50 µg ml(-1) vancomycin. Surprisingly, this Gram-positive-specific antibiotic eliminated the entire culturable-diversity of chemoorganotrophic and sulfur-chemolithotrophic bacteria present in the tested hot water inocula. Moreover, it also killed all the Gram-negative hot-spring isolates that were obtained in vancomycin-free media. Concurrent literature search for the description of Gram-negative thermophilic bacteria revealed that at least 16 of them were reportedly vancomycin-susceptible. While these data suggested that vancomycin-susceptibility could be a global trait of thermophilic bacteria (irrespective of their taxonomy, biogeography and Gram-character), MALDI Mass Spectroscopy of the peptidoglycans of a few Gram-negative thermophilic bacteria revealed that tandem alanines were present in the fourth and fifth positions of their muropeptide precursors (MPPs). Subsequent phylogenetic analyses revealed a close affinity between the D-alanine-D-alanine ligases (Ddl) of taxonomically-diverse Gram-negative thermophiles and the thermostable Ddl protein of Thermotoga maritima, which is well-known for its high specificity for alanine over other amino acids. The Ddl tree further illustrated a divergence between the homologs of Gram-negative thermophiles and mesophiles, which broadly coincided with vancomycin-susceptibility and vancomycin-resistance respectively. It was thus hypothesized that thermophilic Ddls have been evolutionarily selected to favor a D-ala-D-ala bonding. However, preference for D-ala-D-ala-terminated MPPs does not singlehandedly guarantee vancomycin susceptibility of thermophilic bacteria as the large and relatively-hydrophilic vancomycin molecule has to cross the outer membrane before it can inhibit peptidoglycan biosynthesis. Literature shows that many mesophilic Gram-negative bacteria also have D-ala-D-ala-terminated MPPs, but they still remain resistant to vancomycin due to the relative impermeability of their membranes. But the global vancomycin-susceptibility phenotype of thermophilic bacteria itself testifies that the drug crosses the membrane in all these cases. As a corollary, it seems quite likely that the outer membranes of thermophilic bacteria have some yet-unknown characteristic feature(s) that invariably ensures the entry of vancomycin.

7.
Bioorg Med Chem Lett ; 20(8): 2597-600, 2010 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-20304645

RESUMEN

A series of novel substituted hydrazinecarbothioamides was synthesized and evaluated for anti-TB activity. Three most active compounds viz. 1, 6 and 12 were found to exhibit minimum inhibitory concentration (MIC) of 0.4 microg/mL, whereas four compounds viz. 3, 5, 10 and 11 showed comparatively lesser activity with MIC value of 0.8 microg/mL against Mycobacterium tuberculosis strain. A highly significant QSAR equation explaining 81.8% variance is described.


Asunto(s)
Antituberculosos/química , Antituberculosos/farmacología , Hidrazinas/química , Hidrazinas/farmacología , Mycobacterium tuberculosis/efectos de los fármacos , Antituberculosos/síntesis química , Hidrazinas/síntesis química , Pruebas de Sensibilidad Microbiana , Relación Estructura-Actividad Cuantitativa
8.
J Biol Chem ; 277(45): 42505-13, 2002 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-12218059

RESUMEN

Among the enzymes of the carbohydrate sulfotransferase family, human corneal GlcNAc 6-O-sulfotransferase (hCGn6ST, also known as human GlcNAc6ST-5/GST4beta) and human intestinal GlcNAc 6-O-sulfotransferase (hIGn6ST or human GlcNAc6ST-3/GST4alpha) are highly homologous. In the mouse, intestinal GlcNAc 6-O-sulfotransferase (mIGn6ST or mouse GlcNAc6ST-3/GST4) is the only orthologue of hCGn6ST and hIGn6ST. In the previous study, we found that hCGn6ST and mIGn6ST, but not hIGn6ST, have sulfotransferase activity to produce keratan sulfate (Akama, T. O., Nakayama, J., Nishida, K., Hiraoka, N., Suzuki, M., McAuliffe, J., Hindsgaul, O., Fukuda, M., and Fukuda, M. N. (2001) J. Biol. Chem. 276, 16271-16278). In this study, we analyzed the substrate specificities of these sulfotransferases in vitro using synthetic carbohydrate substrates. We found that all three sulfotransferases can transfer sulfate to the nonreducing terminal GlcNAc of short carbohydrate substrates. Both hCGn6ST and mIGn6ST, but not hIGn6ST, transfer sulfate to longer carbohydrate substrates that have poly-N-acetyllactosamine structures, suggesting the involvement of hCGn6ST and mIGn6ST in production of keratan sulfate. To clarify further the involvement of hCGn6ST in biosynthesis of keratan sulfate, we reconstituted the biosynthetic pathway in vitro by sequential enzymatic treatment of a synthetic carbohydrate substrate. Using four enzymes, beta1,4-galactosyltransferase-I, beta1,3-N-acetylglucosaminyltransferase-2, hCGn6ST, and keratan sulfate Gal 6-O-sulfotransferase, we were able to synthesize in vitro a product that conformed to the basic structural unit of keratan sulfate. Based on these results, we propose a biosynthetic pathway for N-linked keratan sulfate on corneal proteoglycans.


Asunto(s)
Córnea/enzimología , Disacáridos/biosíntesis , Sulfato de Queratano/biosíntesis , Sulfatos/metabolismo , Sulfotransferasas/metabolismo , Sustitución de Aminoácidos , Animales , Células CHO , Secuencia de Carbohidratos , Cricetinae , Disacáridos/química , Humanos , Mucosa Intestinal/enzimología , Sulfato de Queratano/química , Ratones , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato , Transfección , Carbohidrato Sulfotransferasas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...